
JB-Prolog 2.1
for the MacIntosh

User's Manual
Language Reference Manual

© Jan Burse, 1993
jburse@clients.switch.ch
XLOG™, Postfach 423, CH-8042

Zürich

Contents

User's Manual....................3
Introduction...................3
The Console Window....3
The Text Windows.........3
The Apple Menu............4
The File Menu................5
The Edit Menu...............6
The Search Menu..........6
The Prolog Menu...........7
The Windows Menu.......7
The Font Menu..............8

Language Reference Manual 9
Introduction...................9
Datastructures...............9
Predicates......................9
Programs.....................10
Control..........................10
Basics..........................10
Input and Output.........11
Operators.....................11
Database......................12
Tail Recursion.............12

Grammar Rules...........12
Debugging...................12
Compatibility...............13
Predicate Index...........14

User's Manual
Introduction

The programming environment permits the user to directly communicate with the
prolog interpreter through a console window and to edit, print and consult texts.
The programming environment is a necessity to make the JB-Prolog 2.1 a self
contained system.

The Console Window

Console
JB-Prolog™ 2.1, c.by Jan Burse, 1993
> ['rel.p'].
'rel.p' consulted, 866 msec.

> father(X,Y).
 Y = albert
 X = berta
;
 Y = albert
 X = bertram

>

In the console window you can directly type queries and submit them to the
interpreter. If the prompt > appears, you can enter a query. Do not forget to
terminate the query by a period and a carriage return. The interpreter will then
successively search for answer substitutions. On success the interpreter displays
the variable bindings. Type a semicolon followed by a carriage return to get a
next solution or type a carriage return alone to abort the query.

The editing of the console is restricted. The area above the last line is read-only.
You can scroll and select this area, but you get a beep, if you try to modify it. On
the other hand as long as you do not terminate your the last line by a carriage
return or ctrl-D, you can always correct it. A ctrl-D has the effect of an end-of-
file.

The Text Windows

:rel.p

◊
◊

◊

◊

parent(anna,celine).
parent(anna,dalia).
parent(anna,daniel).

father(X,Y) :-
 parent(X,Y),
 male(Y).

mother(X,Y) :-
 parent(X,Y),
 female(Y).

grandfather(X,Y) :-
 parent(X,Z),

In a text window you can display and modify a text. Use the File menu to store and print
texts. Use the Edit menu to cut and paste texts. Use the Search menu to find and replace strings, or to go to a
specific line. Use the Prolog menu to consult a text. Use the Windows menu to bring a text window to front. Use
the Font menu to change the font name and font size. If you have modified a text, it is considered dirty. If you
close a dirty text, JB-Prolog 2.1 asks you to save it. If you save or revert a text, the dirty flag is reset.

parent(anna,celine).
parent(anna,dalia).
parent(anna,daniel).

father(X,Y) :-
 parent(X,Y),
 male(Y).

mother(X,Y) :-
 parent(X,Y),
 female(Y).

grandfather(X,Y) :-
 parent(X,Z),

:rel.p

◊
◊

◊

◊

If you click the left bottom square the text window is extended by a spy bar. The signs ◊ and 1 indicate traceable
lines, to see them you have to consult the text at least once. A 1 sign marks a line where the interpreter has to stop.
You can toggle between ◊ and 1 by clicking on the sign.

The Apple Menu

About…

About…: Displays the dialog below.

Okay

© Jan Burse, 1993
XLOG™, Postfach 423, CH-8042 Zürich
E-mail: jburse@clients.switch.ch

JB-Prolog™ 2.1
1337 KBytes memory, 12% used.

The dialog displays the version of your prolog system, the maximum available memory and the usage of the
memory in percent. It also displays the paper and e-mail address where you should direct questions concerning
JB-Prolog 2.1.

Album etc.: Opens a desk accessory.

The File Menu

File
NNew
OOpen…
WClose

SSave
Save As…
Revert

Page Setup…
PPrint…

QQuit

New: Opens a new text window. The name of the text window will be Untitled-# where # is a new number and the
text of the text window will be empty.

Open…: You can choose an existing file. If a text window with the same name already exists the text window
comes to front. Otherwise a text window with the name and the corresponding text is created.

Close: If the text of the front most text window is not dirty the text window is removed. Otherwise the dialog
below is displayed.

CancelDiscardSave

 Save changes to :rel.p ?

If you select Cancel nothing is done. If you select Save the text is saved and the text window is removed. If you
select Discard the text window is removed without saving.

Save: If the front most text window is not untitled the text is saved. Otherwise you can enter a name. If no other
text window with the same name already exists text window is renamed and the text is saved. Otherwise the dialog
below is displayed and nothing is done.

Okay

 :a.p already in use.

Save As…: You you enter a name. If no other text window with the same name already exists the text window is
renamed and the text is saved. Otherwise the dialog above is displayed and nothing is done.

Revert: Displays the dialog below.

CancelDiscard

 Discard changes to :rel.p ?

If you select Discard the last saved text of the front most text window is reload. If you select Cancel nothing is
done. The command is disabled if the front most text window is untitled.

Page Setup…: Displays the page setup dialog. Make sure that you have chosen the right printer with the Chooser
desk accessory.

Print…: Displays the print dialog and then prints the text of the front most text window. Make sure that you have
chosen the right printer with the Chooser desk accessory.

Quit: Successively tries to close every open text window. Terminates JB-Prolog 2.1 if no open text window
remains.

The Edit Menu

Edit
ZUndo

XCut
CCopy
VPaste

Clear

Undo: Not yet implemented.

Cut: Copies the selected text into the clipboard and clears the selected text.

Copy: Copies the selected text into the clipboard.

Paste: Pastes the clipboard into the selected text.

Clear: Clears the selected text.

The Search Menu

Search
FFind & Replace…
GFind Again
HFind & Replace Again

JGo To…

Find & Replace…: Displays the dialog below.

Find & Replace

barReplace

fooFind

Enter a find string and a replace string. Select Find to search for the find string. Select Replace to replace the
selected text by the replace string and search for the find string.

Find Again: Searches for the last entered find string.

Find & Replace Again: Replaces the selected text by the last entered replace string and searches for the last
entered find string.

Go To…: Displays the dialog below.

Go To

 1Go To

Enter a line number. Select Go To to highlight the corresponding line.

The Prolog Menu

Prolog
KConsult

Consult:.If the text of the front most text window is not dirty it is consulted. Otherwise the dialog below is
displayed.

CancelSave

 Save :rel.p before consult ?

If you select Cancel nothing is done. If you select Save the text is saved before consulting it.

The Windows Menu

Windows
Console

:rel.p
:test.p
Untitled-0

Console:.Brings the console window to front.

:rel.p etc.:.Brings the text window to front.

The Font Menu

Font
9 Point
10 Point
12 Point
14 Point
18 Point
24 Point

Athens
Avant Garde
Bookman
Cairo
Chicago
Courier
Geneva
Helvetica
London
Los Angeles
Mobile
Monaco
N Helvetica Narrow
New Century Schlbk
New York
Palatino
San Francisco
Symbol
Times
Venice
Zapf Chancery
Zapf Dingbats

9 Point etc.: Sets the font size.

Athens etc.: Sets the font name.

Language Reference Manual

Introduction

JB-Prolog 2.1 is a slim and powerful prolog interpreter. It is currently available
for the MacIntosh where it comes with a programming environment described in
the User's Manual. In the following a brief summary of the main characteristics of
the language implementation is given. The reader is assumed familiar with the
basic concepts of prolog.

Datastructures

The available datastructures are strings, integers, floats, variables and functions.
For functions dictionary entries are generated that represent name/arity pairs.
Dictionary entries are not reclaimed and therefore you should use strings instead
of atoms whenever possible.

integer: A sequence of digits preceded by an optional sign, i.e. 123, -2, etc.
Integers can be arbitrary long.

strings: A sequence of chars enclosed in apostrophes, i.e. 'abc', 'Hello World!',
etc. Strings can be arbitrary long.

floats: A sequence of digits with a period in it preceded by an optional sign, i.e.
3.1415, -1000.0, etc. 16 digits are significant.

variables: An identifier which starts with a capital letter or an underscore, i.e. _1,
X, Head, etc. Single underscores can be used for anonymous variables.

functions: A special identifier or an identifier which starts with a small letter,
followed by an optional list of arguments, i.e. -(7), foo(X,bar), blue, etc.

Special identifiers are the characters !, |, ,, ; or a sequences of the characters #, *,
+, -, ., :, <, =, >, ?, \, /, @, &, ~, ^,.`. Quotation is used for strings only, i.e. 'f'(a,b)
is not correct and 'f' is a strings but not an atom. Prefix, infix, set and list notation
are supported, i.e. -a, a+b, {a}, [a,b|c].

Predicates

The aim of a prolog program is to define predicates by means of rules.
Synonymously you can call predicates, relations or tables. A predicate is written
as a function, i.e. a small identifier followed by an optional list of arguments. The
following kinds of predicates are distinguished:

undef: If a predicate is seen for the first time the predicate is considered
undefined. You cannot perform calls or database operations on an undefined

predicate.

dynamic: If you consult rules for a predicate or if you call dynamic/1 for a
predicate explicitly a predicate becomes dynamic. You can perform calls and
database operations on a dynamic predicate.

builtin: A predicate that is defined internally is a built-in.You cannot consult
rules for a built-in and you cannot perform database operations on a built-in. You
can only perform calls on a built-in.

Programs

A program is a collection of rules and directives. A rule has the form Head :- Tail
or Head alone, whereas a directive has the form :- Goal. During a consult the old
rules that were previously consulted are first removed and then new rules are
added to the database and directives are executed once:

[F1,…,Fn] Consult the files F1, …, Fn.

Control

The JB-Prolog 2.1 interpreter supports standard backtracking and the cut.
Blocked goals are not supported. The cut in a conjunction, disjunction or findall
resets the surrounding predicate. The cut in a negation or conditional behaves
locally.

! Cut. Succeeds and reset surrounding predicate on redo.
X, Y And. Succeeds whenever X and then Y succeed.
X; Y Or. Succeeds whenever X or else Y succeed.
\+ X Not. As defined by (\+ X) :- X, !, fail; true.
X -> Y; Z If-then-else. As defined by (X -> Y ; Z) :- X, !, Y; Z.
true True. Succeed and fail on redo.
repeat Repeat. Succeed always.
fail Fail. Fail on call.
findall(X,P,L) Findall. Succeed with the list of all X such that P in L.

Basics

The following predicates perform basic operations on the datastructures of JB-
Prolog 2.1. They test, construct and destruct strings, integers, floats and functions.
Note that name/2 and =../2 work with strings.

var(X) Succeeds if X is a variable.
string(X) Succeeds if X is a string.
integer(X) Succeeds if X is an integer.
float(X) Succeeds if X is a float.
function(X) Succeeds if X is a function.
builtin(X) Succeeds if X is a built-in predicate.
name(S,L) Succeeds if L is the character list of the string S.
X=..[S|L] Succeeds if string S is functor and L arguments of X.
X= Y Succeeds if X and Y unify.
X==Y Succeeds if X and Y are identical.
X\==Y Succeeds if X and Y are not identical.
X<Y Succeeds if X is lexically before Y.
X=<Y Succeeds if X is lexically before or identical Y.
X>Y Succeeds if X is lexically after Y.
X>=Y Succeeds if X is lexically after or identical Y.

X is Y Succeeds if Y evaluates to X.
sort(L,R) Succeeds with the sorted list L in R.

Prolog works with uninterpreted functions, therefore 1+2=3 fails. Use is/2 to
evaluate expressions. The supported functions are.

-X Change sign: float, integer.
abs(X) Absolute value: float, integer.
int(X) Convert to integer: float, string.
float(X) Convert to float: integer, string.
str(X) Convert to string: integer, float.
X + Y Addition: integer x integer, float x float. Concat: string x string.
X - Y Subtraction: integer x integer, float x float.

X * Y Multiplication: integer x integer, float x float.
X / Y Division: integer x integer, float x float.
X mod Y Modulo: integer x integer.
min(X,Y) Minimum: integer x integer, float x float, string x string.
max(X,Y) Maximum: integer x integer, float x float, string x string.
sin(X) Sinus: float.
cos(X) Cosinus: float.
tan(X) Tangens: float.
atan(X) Arcus tangens: float.
ln(X) Logarithmus naturalis: float.
exp(X) Exponential function: float.
sqrt(X) Square root: float.

Input and Output

To perform basic output the JB-Prolog 2.1 system maintains a current input
stream and a current output stream. You can operate on these by the following
predicates.

tell(S) Set current output stream to F.
told Set current output stream to previous one.
write(X) Write term X to current output stream.
put(S) Write string S to current output stream.
nl Write a carriage return to current output stream.
flush Flush the current output stream.
see(S) Set current input stream to F.
seen Set current input stream to previous one.
read(X) Read term X from current input stream.
get(X) Read string S from current input stream.

Operators

Prefix and infix operators of the modes fx, fy, xfx, yfx, xfy and yfy are supported.
Postfix operators are not supported. Use op/3 to defined your own operators.

op(N,M,S) Define S an operator of mode M and level N.

Put operators with level above or equal 1000 in parentheses, i.e. write((X;Y))
instead of write(X;Y). The following operators are predefined.

400,yfx *, /, mod
500,fx +, -
500,yfx +, -
700,xfx <, =<, =, =.., ==, >, >=, \==, is
900,fx \+
1000,yfx ,

1100,xfy ->, ;
1200,fx :-
1200,xfx :-

Database

The database stores rules on the heap. A rule of the form Head alone is called a
fact and is an abbreviation for the rule Head :- true. The database uses a simple
hash function on every argument to speedup the access of rules and facts.

dynamic(X) Declare X dynamic.
asserta(R) Assert rule R on top.

assertz(R) Assert rule R on bottom.
clause(R) Retrieve rules matching R.
retract(R) Retrieve and delete rules matching R.

Tail Recursion

In general a rule is tail recursive if it has the form Head :- Guard1, …, Guardn, !, Tail.
Because of the cut, in case of a call of Tail, the interpreter may replace Head by Tail instead of generating a new
invocation for Tail. The JB-Prolog 2.1 interpreter is able to apply this optimization if Tail is dynamic and if the
guards Guard1, …, Guardn are among the following predicates.

var/1 string/1 integer/1 float/1 function/1
builtin/1 name/2 =../2 =/2 ==/2
\==/2 </2 =</2 >/2 >=/2
is/2

Grammar Rules

A program may also contain grammar rules of the form Head --> Tail. In a
consult, grammar rules are converted to normal rules before they are added to the
database. Every non-terminal is thus extended by two parameters in the front to
pass a difference list. The following constructs are supported:

{G} Action. G is executed.
X, Y Sequence. X and then Y are parsed.
[T1,…,Tn] Terminals. Terminals T1,…,Tn are parsed.
! Cut. Backtracking control.

Debugging

The debugger of JB-Prolog 2.1 is line oriented and not predicate oriented. Hence
you will not find predicates to spy or unspy a predicate. You can control the
debugger through the programming environment and through the following
predicates:

trace Continues execution till next traceable line.
notrace Continues with normal execution.
stop Stops execution and exits current block.
exec(P) Calls P once in a new block.

If execution is interrupted, the interpreter highlights the traceable line where
execution stopped and displays a debugger line on the console. A typical
debugger line is:

12 Call: foo(_1,bar)

12 is the depth of execution measured in traceable lines that were passed. Call is

the current port reached and foo(_1,bar) is the current goal. To continue
execution you have to type an option followed by a carriage return right after the
debugger line. You can choose between the following options:

<void> Creep. Continues execution till next traceable line.
l Leap. Continues with normal execution.
s Skip. Continues execution till current level is reached again.
a Abort. Stops execution and exits current block.

Compatibility

JB-Prolog 2.1 has a reduced set of built-ins. If you have problems with missing
predicates try to define the predicates yourself. The following definitions may
help you in doing so.

:- op(700,xfx,'@<').
:- op(700,xfx,'@>').
:- op(700,xfx,'@=<').
:- op(700,xfx,'@>=').
:- op(700,xfx,'=:=').
:- op(200,xfy,'^').

nonvar(X) :- \+var(X).
atom(X) :- function(X), X=..[_].
compound(X) :- function(X), X=..[_,_|_].
number(X) :- integer(X); float(X).
atomic(X) :- string(X);number(X);atom(X).

X @< Y :- X < Y.
X @> Y :- X > Y.
X @=< Y :- X =< Y.
X @>= Y :- X >= Y.
X =:= Y :- Z is X, Z is Y.

atom_chars(A,L) :- var(A), !, name(S,L), A=..[S].
atom_chars(A,L) :- A=..[S], name(S,L).
number_chars(N,L) :- var(X), member(47,L),!, name(S,L), N is float(S).
number_chars(N,L) :- var(X),!, name(S,L), N is int(S).
number_chars(N,L) :- S is str(N), name(S,L).

length([],0).
length([_|Tail],Len) :- var(List), !, Len1 is Len-1, length(Tail,Len1).
length([_|Tail],Len1) :- length(Tail,Len), Len1 is Len+1.

functor(Head,Name,Arity) :-
 var(Head), !, length(List,Arity), Head=..[Name|List].
functor(Head,Name,Arity) :-
 Head=..[Name|List], length(List,Arity).

reconsult(X) :- [X]. /* not exactly */
consult(X) :- [X]. /* not exactly */
assert(X) :- assertz(X).
abolish(N,A) :- functor(X,N,A), (retract((X:-_)), fail; true).
listing(N,A) :- functor(X,N,A),
 (clause((X:-Y)),
 (Y==true -> write(X); write((X :- Y))), put('.'), nl, fail;

 true).

X^P :- P.
setof(X,P,L) :- findall(X,P,H), sort(H,L). /* not exactly */

Predicate Index

:- 10, 11
, 10, 11, 12
-> 10, 11
/ 11
< 10, 11, 12
= 10, 11, 12
=:= 13
=.. 10, 11, 12
=< 10, 11, 12
== 10, 11, 12
> 10, 11, 12
>= 10, 11, 12
@< 13
^ 13
! 10, 12
* 11
+ 10, 11
- 10, 11
--> 12
@=< 13
@> 13
@>= 13
 10, 12
\+ 10, 11
\== 10, 11, 12
abolish 13
abs 10
assert 13

asserta 12
assertz 12
atan 11
atom 13
atom_chars 13
atomic 13
builtin 10, 12
clause 12
compound 13
consult 13
cos 11
dynamic 11
exec 12
exp 11
fail 10
findall 10
float 10, 12
flush 11
function 10, 12
functor 13
get 11
int 10
integer 10, 12
is 10, 11, 12
length 13
listing 13
ln 11
max 11
min 11

mod 11
name 10, 12
nl 11
nonvar 13
notrace 12
number 13
number_chars 13
put 11
read 11
reconsult 13
repeat 10
retract 12
see 11
seen 11
setof 13
sin 11
sort 10
sqrt 11
stop 12
str 10
string 10, 12
tan 11
tell 11
told 11
trace 12
true 10
var 10, 12
write 11
 12

